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Abstract [~/~]q 
A probabilistic formula originally designed for small 
molecules, which allows the recovery of the complete 
from a partial structure [Giacovazzo (1983). Acta Cryst. 
A39, 685-692], is reconsidered. Experimental tests show E~ 
that the formula is potentially able to estimate phases 
accurately provided 30--40% of the electron density is 
correctly located. The formula may be used for ref'ming 
the phase values obtained by isomorphous derivative ,, 
techniques as well as for extending the phasing process E".h 
to a resolution higher than the derivative resolution. 

Symbols  and notation 

Papers by Giacovazzo, Siliqi & Ralph (1994), Giacov- 
azzo, Siliqi & Spagna (1994) and Giacovazzo, Siliqi & 
Zanotti (1995) are referred to as papers I, II and III, 
respectively. 

The symbols and the notation are basically those 
described in paper III. Additional symbols are necessary 
here and they are listed below: 

FTr.h = IF,~,hl exp(icP,,,h) Structure factor of a partial 
structure. The subscript p is 
used in papers I-III, as well as 
in this paper, to indicated 
protein. 
(Statistically equivalent) num- 
ber of atoms of the partial 
structure for the primitive unit 
cell. 
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(Statistically equivalent) num- 
ber of atoms of the difference 
structure obtained by sub- 
tracting the partial from the 
protein structure. 
Structure factors of the pro- 
tein structure pseudo-normal- 
ized with respect to the 
difference structure. 
Structure factors of the partial 
structure pseudo-normalized 
with respect to the difference 
structure. 

Introduction 

According to the tangent formula (Karle & Hauptman, 
1956), 

r 

tan0  h j=l T h = 7 = - -  (1) 
E Cjcos( j + Bh" 
j=l 

0 h is the most probable value of 9~. Its reliability depends 
on the concentration parameter 

Cf h = (T 2 -3 t- B2) !/2. (2) 

Relationship (1) has practically solved the phase problem 
for small molecules. Its application to two small proteins 
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(APP, a 36-residue hormone, and rubredoxin from 
Desulfovibrio vulgaris), both with data up to atomic 
resolution, attained notable success. Relation (1) is 
strictly connected to the Sayre-Hughes equation (Sayre, 
1952; Hughes, 1953): 

E h : L -1 ~ E k E h _ l t ,  (3) 
k 

which, with respect to (1), imposes additional restraints 
on the moduli of the structure factors. 

Specific reasons make it difficult to apply (1) to 
proteins of usual size: (a) the flatness of the probability 
distribution P(~); (b) the limited data resolution; and (c) 
the difficulty in finding the correct phase set, if obtained, 
among the various trial solutions. 

The problem has been reconsidered by Giacovazzo, 
Guagliardi, Ravelli & Siliqi (1994). Their results are 
summarized here: 

(a) In the absence of phase information, 

Z h = (O~h)/0,0t h (4) 

may be considered as the signal-to-noise ratio. {ah) is the 
expected value of o~ h given by 

j = l  

and 0 ,2 (Cascarano, Giacovazzo, Burla, Nunzi & ~h 
Polidori, 1984) is the variance of a n given by 

/- 

0,2~h = ½ ~ G2[1 + DE(Gj) - 2DE(Gj)] • (6) 
j = l  

(b) The statistical solvability criterion was formulated, 
according to which (1) can be successfully applied to a 
given set of diffraction data if the relation 

z > T r (7) 

is satisfied by a sufficiently high percentage of large 
normalized structure factors. T, represents an acceptable 
lower limit for the signal-to-noise ratio (say 1", ~_ 3). 

(c) For proteins of usual size, 

z<_T, 

for a large percentage of reflections. Under these 
conditions, the Sayre-Hughes equation is practically 
violated: the correct set of phases is not obtained by 
application of the tangent formula and the correct 
solution cannot be recognized among the others. 

In paper I, attention was focused on the case in which 
diffraction data of one isomorphous derivative are also 
available. In this case, a mathematical procedure 
(Hauptman, 1982) can be used that integrates direct 
methods and isomorphous-replacement techniques. Then 
the triplet reliability parameter G is replaced by 
(Giacovazzo, Cascarano & Zheng, 1988) 

3/2 t t t 
a = 210,3/0,2/2]p RIR2R 3 d- 2[0"3/0, 2 ]HA1AzA 3. 

The a parameter is accordingly modified. When A is 
used, condition (7) is satisfied by a sufficiently high 
percentage of large normalized structure factors. This 
suggested that the ab initio direct solution of proteins is 
feasible when diffraction data from one isomorphous 
derivative are additionally available. 

Papers II and III were devoted to identifying a 
practical procedure for the ab initio phasing of proteins. 
It was shown that the phasing process can be extended to 
about 40% of the measured reflections (up to the 
derivative resolution) and this can provide interpretable 
electron-density maps. Since the procedure is highly 
automatic, thousands of phases can be available in a 
limited computing time. 

In spite of this remarkable success, some drawbacks 
still limit the applicability of the process: 

(1) The quality of the final phases depends on the 
quality (i.e. the degree of isomorphism) of the heavy- 
atom derivative. 

(2) Even if the number of phased reflections is 
sufficiently large for several practical purposes, a non- 
negligible number of reflections with [A I --~ 0 but large R 
values remain unphased. Their contribution to the 
electron-density map is therefore lost. 

(3) The overall phase error is moderately large: its 
reduction should provide a better definition of the protein 
envelope. 

(4) No method is suggested for extending phases 
beyond the derivative resolution. 

(5) Pseudo-centrosymmetrical phases are obtained in 
specific space groups. 

The aim of this paper is to check the feasibility of a 
phasing method that exploits as prior information the 
electron-density map eventually available by application 
of the procedure described in papers II and III. It will be 
shown that the method is potentially able to reduce 
drawbacks (1)-(4). 

Direct methods for high-resolution phase refinement 

While the ab initio solution of protein structures is not 
within the capacity of traditional direct methods, their 
efficiency for phase refinement and extension is still 
under discussion. From the first trials by Reeke & 
Lipscomb (1969), Weinzierl, Eisenberg & Dickerson 
(1969) and Coulter (1971), it was clear that a 
characteristic feature of the tangent formula is the 
following: a possible moderate improvement of the 
phases is frequently followed, after a few cycles of 
refinement, by their deterioration. Phases diverge to a 
self-consistent incorrect set. The application of the Sayre 
equation proved more stable even if much more time 
consuming: therefore, some programs (e.g. SAYTAN; 
Woolfson, 1993) introduce Sayre's-formula restraints in 
the tangent-formula framework. A more general ap- 
proach has been followed by Main (1990): the electron- 
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density map is improved by combining information from 
real and reciprocal spaces. The solution of large non- 
linear systems, as required by the Sayre equation, is 
circumvented by the use of the conjugate-gradient 
method to calculate shifts of the electron-density map. 
The information so obtained is combined (Cowtan & 
Main, 1993) with solvent-flattening techniques (Wang, 
1985), histogram matching (see Lunin, 1993), non- 
crystallographic symmetry averaging (Bricogne, 1974) 
and the use of a partial structure according to the method 
of Read (1986). The applications of such a method to 
practical cases show that the improvement of the 
electron-density map is a product of the simultaneous 
use of the different techniques. 

A different point of view may be introduced. Let us 
suppose that phase estimates (for example, by isomor- 
phous-derivative techniques) are available for a subset of 
reflections and that the calculated electron-density map is 
able to reveal the main features of the structure. The map 
may be supposed not to be interpretable in terms of chain 
tracing but showing the general envelope of the 
molecule. This envelope may be considered as the prior 
information for the subsequent steps: in particular, its 
inverse Fourier transform may be calculated and the 
values Frr are derived for the various structure factors. 
Then triplet invariants can be estimated via distributions 
like 

The probabilistic formula to apply, derived from (8), is 

,, , 3/2 E" " " " Eh "~ Err, h nt- [0.3/0.2 ]q ~--~( k -- E m k ) ( E h - k  -- Err,h-k),  
k 

which, in terms of phases, is equivalent to 

tan Oh = T, /B , ,  

where 

91ptt .( iptt 3/2 T,~ . . . .  hU'rr,h sin(prr, h + [0"3/0"2 ]q 

x-'JR'P" sin(% + %-k)  X Z_~L k ' ~ ' h - k  
k 

- R'~,kR'h-k sin((P,~,k + ~ - k )  

-- ~'"~'" s i n ( ~  + qgrr,h_k) "~k'~Tr,h-k 

~'" ~'" sin(~orr.k + G,h-k)]} "]- "'Jr,k"rr, h-k 

Brr = 2R~ {R;, h cos qg,~,h + [0.3/0.32/2]q 

B i t  t !  • • x ~[  ~R,_~ cos(~ + ~_~) + .1}. 
k 

O h is the most probable value of tph and 

O~rr, h - -  (T  2 -~- B2)  1/2 

is its reliability parameter. 

(lO) 

(11) 

(12) 

P(qgp,h, (Pp,k, qgp, h-k IFp,nl, IFp,kl, IFp,n-kl, IF,~,hl, 

IFmk l, IFrr, h-k l, ¢Pmh, ¢Prr,k, ~0~r.h-k), (8)  

derived by Giacovazzo (1983), rather than via 

P(~Op.h, ~Op,k, ~0,,h-k] IF,,hl, IFp,kl, IFp,h_kl) (9) 

used by tangent formula (1). The advantage of (8) with 
respect to the other methods may be summarized as: 

(a) The electron-density map is divided into two 
regions; the first coincides with the assumed partial 
structure, the second is 'flattened' to zero and gives 
vanishing contribution to the values of Frr. 

(b) The distribution can take full advantage of the 
known partial structure, which on the contrary is 
neglected in (9). 

(c) The prior information proved to lead to highly 
accurate estimates of the phases (Camalli, Giacovazzo & 
Spagna, 1985; Burla, Cascarano, Fares, Giacovazzo, 
Polidori & Spagna, 1989), at least for small-molecule 
structures. 

The problem is now: is the supplementary information 
provided by (8) sufficient for reliably extending and 
refining phases of macromolecules? The answer is not 
easy: the effectiveness of the process depends on the 
accuracy of the starting phases tprr, and therefore on the 
general correcmess of the envelope, and on the complex- 
ity of the entire structure. In this paper, we want to 
explore first the feasibility of the method by working in 
an ideal and therefore well controlled situation. 

T h e  s tat i s t ica l  z test  w h e n  a part ia l  s t r u c t u r e  is 
available 

In order to estimate the efficiency of (10), we should 
calculate, in accordance with (4), 

Zrr.h = (C~rr,h)/0.~.,.. (13) 

(a,~h) and 0.~ may be derived according to the , ~r,h 
following procedure: 

(1) First we derive, from equation (19) of the paper by 
Giacovazzo (1983), the marginal distribution P(CPk, 
q~_klR~, Ri~, R" " " " h-k, Rmh, R..k, Rrr,h-k, qgmh, ¢Pmk, 
¢P..h-k), which is obtained by integrating (8) over (Ph. 
Indeed, in our case, the phase ¢Ph is supposed to be 
unknown, in accordance with the fact that we are 
interested in (cO.,h). For the sake of simplicity, we neglect 
terms of o r d e r  [0.3/0.3/2]q and we find that (% + q~-k) is 
distributed according to the Von Mises distribution 

M(CPk + qgh_k; qgrt.k + qgrr.h_k, ql,k), 
where ql,k satisfies the-relation 

D,(q~, k) = DI(2R[R'~.k)D,(2Rh_kR"h_k). 

(~0rr.k + qg,~,h_k) is the expected value of (% + %-k)  and 
ql,k is the concentration parameter of the distribution. 

(2) In an analogous way, we obtain that (tp,~, k + tPh_k) 
is distributed according to the Von Mises distribution 
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M(qgrr, k -F (jgh_k; (jgn.,k + qgrt,h_ k, q2,k), 
O D" i~" where q2,k ~ ~'~'h-k'~'Jr, h-k" 

(3) Also, (~0k + ~0~ h_k) is distributed according to 

g ( ~ o k  -~- ~Jr,h-k; ~0~r,k "3!- ~Tr,h-k, q3,k), 

") iT~tt Dtt where q3.k - -  "-"k"rr .k" 
(4) We recall that the distribution of the modulus c~ 

of the resultant of r complex vectors Q~ exp(ivj) under 
the hypothesis that Qj are distributed according to the 
Von Mises distribution M(vj; O, qj) is the normal distri- 
bution (Cascarano, Giacovazzo & Guagliardi, 1992) 
N(a; (a), 0"2), where 

(.) = o_p,(q? 
j= l  

r 
0"2 i ~ tO2[1 = 2 d...~ ~ j  t +D2(qj)-2D2(qjl] • (14) 

j=l  

(5) We apply the above result to the sets of vectors 

Ql,k  exp[i(99k + ~Dh-k)]' 
k 

a2,k exp[i(~o~ k + (Ph-k)]'  (15) 
k 

Q3,k exp[i(~ + ~0,~,h-k)], 
k 

where 

T h e n ,  

3/2 . . 
Ql ,k  = 2[0"3/0"2 ]q R k R h - k '  

3/2 . . 
Q2,k : 210"3/0"2 ]qRjr,kRh-k, 
Q3,k 210"3/0"~/21q t;''t t;'' = ,~k~rr,h_k • 

where 

- -  2R" (Oe,h) - -  .,h + ~ [Ql ,kDl(q l ,k )  
k 

- - O 2 , k D l ( q 2 , k ) - - Q 3 , k D l ( q 3 , k ) q - Q 4 , k ] ,  ( 1 6 )  

3/2 /p.  g?. 
a4,k = 2[0"3/0"2 ]q"rc ,k"n ' .h-k"  

(C~,~,h) reduces to (Oth) when no partial structure is 
available. 

(6) The value of 0"2,, h may be derived by applying 
(14) in turn to the terms in (15) and then summing the 
contributions. 

The statistical solvability criterion has been applied to 
the experimental data of the structures quoted in Table 1. 
For each test structure, we give in Table 2 the resolution 
of the diffraction data (RES), the number of atoms 
(statistically calculated) in the primitive unit cell (N), the 
number of measured reflections (NREFL), the number of 
large normalized structure factors (NLAR) among which 
triplet invariants are calculated, and the total number of 

Table 1. Code name, space group and crystallochemical 
data for test structures 

Structure Space 
code group Molecular formula Z 

APP O) C2 CIgoN53OssZn 4 
BPTI (b) P212121 S9OI49N84C289 4 
LYSO (c) P 4 3 2 1 2  SloO286N193C613 8 
MYO (a) P21 FeS40389N220Cs17 2 
M-FABp~e) P212~ 21 C667 N t 700261 S3 4 
E2 (/) F432 Ct 170N3100366 S7 96 

References: (a) Glover, Haneef, Pitts, Wood, Moss, Tickle & Blundell 
(1983); (b) data by courtesy of R. Huber, MPI Martinsried, Germany; 
(c) data by courtesy of C. Betzel, ENBL, Hamburg, Germany; (d) 
Hartmann, Steigemarm, Reuscher & Parak (1987); (e) Zanotti, Scapin, 
Spadon, Veerkamp & Sacchettini (1992); ( f )  Mattevi, Obmolova, 
Schulze, Kalk, Westphal, De Kok & Hol (1992). 

Table 2. Parameters defining protocol for calculations 
(see the main text for the symbols) 

Code RES (,~,) N NREFL N L A R  NTRIP 
APP 0.99 413 17058 700 8907 
BPTI 1.00 1860 17300 700 21759 
LYSO 1.69 7720 13622 700 24899 
MYO 1.50 2648 15903 1100 26796 
M-FABP 2.14 4076 7769 700 23012 
E2 3.00 40783 8136 400 23820 

triplets that contribute to the various c¢ values (NTRIP). 
For each structure, we calculated the z h values corre- 
sponding to the NLAR reflections according to definition 
(4) and the z,~,h values according to definition (13). 

Two different amounts of prior information were used 
for z,~,h corresponding to different values of the 
diffraction ratio DR, = [0.2],~/[0.2]p = 0.20, 0.40. In Figs. 
1-6, we show the P(z) and P(z~) curves. In general, P(z) 
curves do not satisfy the statistical solvability criterion: 
on the contrary, the P(z,~) curves are remarkably shifted 
towards the fight and satisfy the criterion. The only 
exception occurs for APP for which the prior information 
does not improve the distribution of the signal-to-noise 
ratio. At the moment, we are unable to explain this 
discordant result. The shifts relative to the P(z,~) curves 
increase with the amount of prior information: therefore, 
more information should make (10) more efficient. 

In order to collect the above observations in a simple 
sentence, we can conclude that the Sayre-Hughes 
relation (3) is expected to be violated for all test 
structures except APP, while relation (10) is expected 
to be satisfied for all test structures. In order to check this 
conclusion, we calculated the following figures of merit: 

IEn - Eh,, I ~ lEg - E~,'~ I 
F O M  = h FOM,~ = , 

IEhl ~ IEi~l 
h h 

(17) 

In (17), E h and Ei~ stand for RheXp(itPh ) and 
R~ exp(i~) ,  respectively; ~ is the true phase (derived 
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Table 3. FOM and FOM,~ values for the test structures Table 5. Average phase errors according to the Sim 

FOM,, FOM,~ 
Code VOM ( D R ,  = 0.20) (DR~r = 0.40) 

APP 0.512 0.515 0.490 Code 
BPTI 0.783 0.579 0.496 APP 
LYSO 0.847 0.696 0.598 BPTI 
MYO 0.800 0.632 0.497 LYSO 
M-FABP 0.863 0.695 0.570 MYO 
E2 0.910 0.567 0.477 M-FABP 

E2 

(1959) relationship 

(DR,~ = 0.20) (DR,r = 0.40) 

39.5 29.8 
47.1 24.4 
46.5 30.1 
41.6 25.5 
43.2 29.4 
30.7 20.8 

Table 4. ([A~o°[) = ([~0°alc - (P~rue[)" mean phase error for 
Sayre-Hughes relationship; (1,4~0°1),~: mean phase error 

for (11) 

(iA~0Ol),~ (o) (ia~0ol),~ (o) 
Code (IAq¢'I) (°) (DR, = 0.20) (DR,r = 0.40) 
APP 23.7 20.0 18.4 
BPTI 27.1 21.5 16.4 
LYSO 45. I 32.1 25.4 
MYO 42.6 28.9 20.6 
M-FABP 46.3 32.7 23.3 
E2 52.8 23.4 17.7 

from the refined published crystal structure). R and R" are 
respectively normalized and pseudonormalized magni- 
tudes derived from measurements. 

When FOM is calculated for the Sayre-Hughes 
relationship, E~I is obtained from the right-hand side 
of (3) by using true phases (gk + tPh-k). When FOM,~ is 
calculated for (10), E ~  is obtained from the right-hand 
side of (10) by using the true values tpk, ~ - k ,  ~O,~,h, ~0,~,k, 
~0,~.h_ k. Large values of FOM and FOM,~ involve 
remarkable deviations (in terms of moduli and phases) 
of the calculated E's from the observed ones and 
therefore indicate violation of (3) and (10). The results 
are shown in Table 3. FOM values are quite large, thus 
confirming that the Sayre-Hughes relation is not 
satisfied. FOM,~'s are remarkably smaller than the 
corresponding FOM's: the situation still improves when 
DR~ increases. Comparison between the numerical 
values of FOM and FOM,~ confirms the significance of 
Figs. 1-6: a good correlation can be found between the 
shifts to the right of the distribution P(z,~) and the 
differences FOM-FOM,~. For example, FOM,~ _~ FOM 
for APP. 

The values of FOM and FOM,~ in Table 3 suggest that 
the accuracy of the phases determined via (11) is 
expected to be higher than for phases fixed by (3); the 
average accuracy should increase with DRy,. This 
expectation is confirmed by a supplementary test (see 
Table 4): we calculated the average phase error 
(1"4~1) = (Iq~cal--tP~true[) corresponding to FOM and 
FOM,, The larger the amount of prior information, the 
better the phase estimates are. 

A question could arise: is the value ~ ,  as calculated 
from (1 l), closer on average to ~,r~ than the value ~o,~,h? 
In Table 5, we show the values ([~tr~e- tP°l) for the 
different values of DR,~. If these are compared with the 

average phase errors in Table 4, the important role of the 
triplet contribution in the phasing process is realized. 
Thus, phases are estimated through (11) much better than 
through the Sim (1959) relationship. 

Tangent refinement 

It is worthwhile noting that in Table 4 (IA~l)  is rather 
small even for the Sayre relationship. However, it should 
not be concluded that the Sayre relationship is satisfied. 
Indeed, the correct criterion for deciding on the violation 
of (3) or (10) is the inspection of FOM and FOM,~ 
because they simultaneously involve phases and moduli. 
If this is true, the values of FOM and FOM,~ should be 
useful indicators for foreseeing the behaviour of the 
tangent procedures. In particular, they should measure 
the tendency of the tangent formulas (1) and (11) to 
diverge to self-consistent incorrect sets of phases. 

In order to confirm this property, we started phase 
refinement from correct phase values according to (1) 
and (11) and we checked the average phase error after 
convergence was attained. The threshold value TR~ (i.e. 
a reflection is considered phased if o~ >_ TR,,) is multi- 
plied by 0.65 in each new cycle. The process stops for (3) 
if ()--~h ot - )-~h °tlX)/)--~h a _ 0.02, where al, c is the a 
value in the preceding refinement cycle. When (11) is 
used, o~,~ replaces o~. The results are shown in Table 6. It 
may be noted that: 

(i) Not all the NLAR reflections are phased at the end 
of the process. The percentage of phased reflections is 
small for E2 when the Sayre-Hughes relation is used. 

(ii) Phases diverge remarkably, except for LYSO, 
M-FABP and E2 when DR,, # 0. 

(iii) As a general trend, (11) is more efficient than (1) 
but is still not satisfactory. 

Much better results are obtained by slightly modifying 
the refinement process. The program stops when 
TR~ _< 1.5 (this condition prevents unreliable phase 
assignments) or when the number of phase reflections 
is larger than 0.85 x NLAR. This last condition avoids 
repeated cycles of refinement on the same set of phases: 
Under these conditions, phases usually move towards 
autoconsistency and diverge from the true values. The 
results of the new procedure are shown in Table 7. It may 
be noted that: (a) the number of phased reflections is 
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Table 6. ( I A ~ l )  after the application of the tangent 
formula to true phases; % is the percentage of NLAR 

reflections phased by the process 
(Izag°l) (°) (Izacal) (°) (Izacal) (o) 

(%) (%) (%) 
Sayre-Hughes Equation (11) Equation (11) 

Code relation (DR,, = 0.20) (DR,~ = 0.40) 
APP 43.2 41.7 43.5 

(99) (99) (99) 
BPTI 79.4 66.4 65.9 

(93) (98) (99) 
LYSO 40.2 31.2 24.5 

(88) (91) (95) 
MYO 68.0 62.1 57.6 

(98) (99) (100) 
M-FABP 41.8 30.0 23.1 

(87) (89) (93) 
E2 35.2 26. l 19.2 

(53) (91) (98) 

Relationship (10) can be used in two different ways: 
(a) Combined with the probabilistic techniques described 
in papers I-III to improve the phasing process for 
reflections up to isomorphous resolution. In this case, the 
partial structure constitutes a supplementary derivative, 
the quality of which depends on the accuracy with which 
the partial is defined. Tangent refinement of this second 
derivative will produce phases that may be usefully 
combined with MIR phases. (b) As a stand-alone 
technique that is particularly useful at resolution higher 
than the derivative resolution. In both cases, the use of 
(10) should be cyclic: the initial prior information is used 
for phase extension and refinement, which, in turn, 
should provide a better electron-density map and there- 
fore a better partial structure to use as new prior 
information. The practical results of this procedure will 
be described in a following paper. 

Table 7. (IA~I) after the application of the tangent 
formula to true phases; % is the percentage of N L A R  
reflections phased by the process; the minimum threshold 

for TR~ is 1.5 

(Iza~l) (°) (iA~oOl) (o) (iA~0Ol) (o) 
(%) (%) (%) 

Sayre-Hughes Equation (11) Equation (11) 
Code relation (DR," = 0.20) (DR,~ = 0.40) 

APP 27.3 25.9 25.6 
(85) (88) (90) 

BPTI 36.4 24.5 14.6 
(88) (92) (88) 

LYSO 32.9 27.5 22.9 
(72) (86) (93) 

MYO 40.7 25.5 17.4 
(85) (88) (92) 

M-FABP 33.4 26. I 19.5 
(68) (84) (85) 

E2 30.8 23.3 16.9 
(32) (87) (93) 

larger when relation (11) is used; in particular, the Sayre 
equation is still unable to fix for E2 the phases of about 
0.68 x N L A R  reflections; (b) the phase error is 
remarkably smaller for relation (11): the error decreases 
when DR,~ increases. 

The above conclusions confirm that the suggestions 
we derived from Figs. 1-6 are sound: the prior 
information on part of a crystal structure allows the 
successful application of (10) to macromolecules; that is, 
the complete crystal structure may in principle be 
recovered when a partial structure is available. 

Concluding remarks  

It has been shown that relationship (10) is potentially 
able to estimate accurately the phases of a relevant 
number of reflections provided some prior information is 
available on part of the structure. As a rule of thumb, 
prior information on about 30--40% of the structure 
should make (10) highly efficient. 
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